مقاله نانو لوله های کربنی
دانلود مقاله نانو لوله های کربنی
انتقال گرما به وسیله نانوسیالات
اخیراً استفاده از نانوسیالات که در حقیقت سوسپانسیون پایداری از نانوفیبرها و نانوذرات جامد هستند، به عنوان راهبردی جدید در عملیات انتقال حرارت مطرح شده است.
تحقیقات اخیر روی نانوسیالات، افزایش قابل توجهی را در هدایت حرارتی آنها نسبت به سیالات بدون نانوذرات و یا همراه با ذرات بزرگتر (ماکرو ذرات) نشان میدهد. از دیگر تفاوتهای این نوع سیالات، تابعیت شدید هدایت حرارتی از دما، همچنین افزایش فوقالعاده فلاکس حرارتی بحرانی در انتقال حرارت جوشش آنهاست. نتایج آزمایشگاهی به دست آمده از نانوسیالات نتایج قابل بحثی است که به عنوان مثال میتوان به انطباق نداشتن افزایش هدایت حرارتی با تئوریهای موجود اشاره کرد. این امر نشان دهنده ناتوانی این مدل ها در پیشبینی صحیح خواص نانوسیال است. بنابراین برای کاربردی کردن این نوع از سیالات در آینده و در سیستمهای جدید، باید اقدام به طراحی و ایجاد مدلها و تئوریهایی شامل اثر نسبت سطح به حجم و فاکتورهای سیالیت نانوذرات و تصحیحات مربوط به آن کرد.
سیستمهای خنک کننده، یکی از مهمترین دغدغههای کارخانهها و صنایعی مانند میکروالکترونیک و هر جایی است که به نوعی با انتقال گرما روبهرو باشد. با پیشرفت فناوری در صنایعی مانند میکروالکترونیک که در مقیاسهای زیر صد نانومتر عملیاتهای سریع و حجیم با سرعتهای بسیار بالا (چند گیگا هرتز) اتفاق میافتد و استفاده از موتورهایی با توان و بار حرارتی بالا اهمیت به سزایی پیدا میکند، استفاده از سیستمهای خنککننده پیشرفته و بهینه، کاری اجتنابناپذیر است. بهینهسازی سیستمهای انتقال حرارت موجود، در اکثر مواقع به وسیله افزایش سطح آنها صورت میگیرد که همواره باعث افزایش حجم و اندازه این دستگاهها میشود؛ لذا برای غلبه بر این مشکل، به خنک کنندههای جدید و مؤثر نیاز است و نانو سیالات به عنوان راهکاری جدید در این زمینه مطرح شدهاند. نانوسیالات به علت افزایش قابل توجه خواص حرارتی، توجه بسیاری از دانشمندان را در سالهای اخیر به خود جلب کرده است، به عنوان مثال مقدار کمی (حدود یک درصد حجمی) از نانوذرات مس یا نانولولههای کربنی در اتیلن گلیکول یا روغن به ترتیب افزایش ۴۰ و ۱۵۰ درصدی در هدایت حرارتی این سیالات ایجاد میکند [۲] [۳]؛ در حالی که برای رسیدن به چنین افزایشی در سوسپانسیونهای معمولی، به غلظتهای بالاتر از ده درصد از ذرات احتیاج است؛ این در حالی است که مشکلات رئولوژیکی و پایداری این سوسپانسیونها در غلظتهای بالا مانع از استفاده گسترده از آنها در انتقال حرارت میشود. در برخی از تحقیقات، هدایت حرارتی نانوسیالات، چندین برابر بیشتر از پیشبینی تئوریها است. از دیگر نتایج بسیار جالب، تابعیت شدید هدایت حرارتی نانوسیالات از دما [۴] [۵] و افزایش تقریباً سه برابری فلاکس حرارتی بحرانی آنها در مقایسه با سیالات معمولی است [۶ و۷ [
این تغییرات در خواص حرارتی نانوسیالات فقط مورد توجه دانشگاهیان نبوده در صورت تهیه موفقیتآمیز و تأیید پایداری آنها، میتواند آیندهای امیدوارکننده در مدیریت حرارتی صنعت را رقم بزند. البته از سوسپانسیون نانوذرات فلزی، در دیگر زمینهها از جمله صنایع دارویی و درمان سرطان نیز استفاده شده است [۸]. به هر حال تحقیق در زمینه نانوذرات، دارای آیندهای بسیار گسترده است .
تهیه نانوسیالات
بهبود خواص حرارتی نانوسیال احتیاج به انتخاب روش تهیه مناسب این سوسپانسیونها دارد تا از تهنشینی و ناپایداری آنها جلوگیری شود. متناسب با کاربرد، انواع بسیاری از نانوسیالات از جلمه نانوسیال اکسید فلزات، نیتریتها، کاربید فلزات و غیرفلزات که به وسیله یا بدون استفاده از سورفکتانت در سیالاتی مانند آب، اتیلن گلیگول و روغن به وجود آمده است. مطالعات زیادی روی چگونگی تهیه نانوذرات و روشهای پراکندهسازی آنها درسیال پایه انجام شده است که در اینجا به طور مختصر چند روش متداول را که برای تهیه نانوسیال وجود دارد ذکر میکنیم. یکی از روشهای متداول تهیه نانوسیال، روش دو مرحلهای است [۱۰]. در این روش ابتدا نانوذره یا نانولوله معمولاً به وسیله روش رسوب بخار شیمیایی (CVD) در فضای گاز بیاثر به صورت پودرهای خشک تهیه میشود [۱۱] [ شکل ۱٫ وسط]، در مرحله بعد نانوذره یا نانولوله در داخل سیال پراکنده میشود. برای این کار از روشهایی مانند لرزانندههای مافوق صوت و یا از سورفکتانتها استفاده میشود تا تودههای نانوذرهای به حداقل رسیده و باعث بهبود رفتار پراکندگی شود. روش دو مرحلهای برای بعضی موارد مانند اکسید فلزات در آب، دیونیزه شده بسیار مناسب است [۱۰] و برای نانوسیالات شامل نانوذرات فلزی سنگینی، کمتر موفق بوده است
روش دو مرحلهای دارای مزایای اقتصادی بالقوهای است؛ زیرا شرکتهای زیادی توانایی تهیه نانوپودرها در مقیاس صنعتی را دارند
روش یک مرحلهای نیز به موازات روش دو مرحلهای پیشرفت کرده است؛ به طور مثال نانوسیالاتی شامل نانوذرات فلزی با استفاده از روش تبخیر مستقیم تهیه شدهاند [۲] و [۱۲]. در این روش، منبع فلزی تحت شرایط خلاء تبخیر میشود [۱۴] [شکل ۱٫ چپ[
در این روش، تراکم توده نانوذرات به حداقل خود میرسد، اما فشار بخار پایین سیال یکی از معایب این فرایند محسوب میشود؛ ولی با این حال روشهای شیمیایی تک مرحلهای مختلفی برای تهیه نانوسیال به وجود آمده است که از آن جمله میتوان به روش احیای نمک فلزات و تهیه سوسپانسیون آن در حلالهای مختلف برای تهیه نانوسیال فلزات اشاره کرد [۱۶] [شکل ۱٫ راست]. مزیت اصلی روش یک مرحلهای، کنترل بسیار مناسب روی اندازه و توزیع اندازه ذرات است.
انتقال حرارت در سیالات ساکن
خواص استثنایی نانوسیالات شامل هدایت حرارتی بیشتر نسبت به سوسپانسیونهای معمولی، رابطه غیرخطی بین هدایت وغلظت مواد جامد و بستگی شدید هدایت به دما و افزایش شدید فلاکس حرارتی در منطقه جوشش است. این خواص استثنایی، به همراه پایداری، روش تهیه نسبتاً آسان و ویسکوزیته قابل قبول باعث شده تا این سیالات به عنوان یکی از مناسبترین و قویترین انتخابها در زمینه سیالات خنک کننده مطرح شوند. نتایج یکی از تحقیقات منتشر شده در زمینه تغییر هدایت حرارتی نانوسیال به عنوان تابعی از غلظت در شکل (۲) آمده است.
بیشترین تحقیقات روی هدایت حرارتی نانوسیالات، در زمینه سیالات حاوی نانوذرات اکسید فلزی انجام شده است .
ماسودا افزایش ۳۰ درصدی هدایت حرارتی را با اضافه کردن ۳/۴ درصد حجمی آلومینا به آب گزارش کرده است. لی [۱۵] افزایش ۱۵ درصدی را برای همین نوع نانوسیال با همین درصد حجمی گزارش کرده است که تفاوت این نتایج را ناشی از تفاوت در اندازه نانوذرات بهکار رفته در این دو تحقیق میداند. قطر متوسط ذرات آلومینای بکاررفته در آزمایش اول ۱۳نانومتر و در آزمایش دوم ۳۳ نانومتر بوده است. زای و همکاران [۲۰] [۱۹] افزایش ۲۰ درصدی را برای ۵۰ درصد حجمی از همین نانوذرات گزارش کردهاند. گروه مشابهی [۲۱] برای نانوذرات کاربید سیلیکون نیز به نتایج مشابهی رسیدند. لی بهبود نسبتاً کمتری را در هدایت حرارتی نانوسیالات حاوی نانوذرات اکسید مس، نسبت به نانوذرات آلومنیا مشاهده کرد؛ در حالی که ونگ [۲۴] ۱۷ درصد افزایش هدایت حرارتی را برای فقط ۴/۰ درصد حجمی از نانوذرات اکسید مس در آب گزارش کرده است. برای نانوسیال با پایه اتیلن گلیکول، افزایش بالای ۴۰ درصد برای ۳/۰ درصد حجمی مس با متوسط قطر ده نانومتر گزارش شده است. پتل [۵] افزایش بالای ۲۱ درصد برای سوسپانسیون ۱۱ درصد حجمی از نانوذرات طلا و نقره که به ترتیب در آب و تولوئن پراکنده شده بودند را مشاهده کرد. در مواردی هم هیچ افزایش قابل توجهی در هدایت مشاهده نشده است
[۲۳].
اخیراً تحقیقات دیگری روی وابستگی هدایت به دما برای غلظتهای بالای نانوذرات اکسید فلزات و غلظتهای پایین نانوذرات فلزی در حال انجام است که در هر دو مورد در محدوده دمای ۲۰ تا ۵۰ درجه سانتیگراد افزایش دو تا چهار برابری در هدایت مشاهده شده است و در صورت تأیید این خواص برای دماهای بالاتر میتوان نانوسیال را در سیستمهای گرمایشی نیز استفاده کرد.
بیشترین افزایش هدایت در سوسپانسیون نانولولههای کربنی گزارش شده است که علاوه بر هدایت حرارتی بالا، نسبت طول به قطر بالایی دارند[شکل ۳]. از آنجا که نانولولههای کربنی، تشکیل یک شبکه فیبری میدهند، سوسپانسیون آنها بیشتر شبیه کامپوزیتهای پلیمری عمل میکند. بیرکاک[۲۵] افزایش ۱۲۵ درصدی هدایت را در اپوکسی پلیمر- نانولوله حاوی یک درصد نانولوله تک دیواره گزارش کرد، همچنین مشاهده کرد که با افزایش دما، هدایت حرارتی افزایش مییابد.
چوی[۳] برای سوسپانسیون یک درصد نانولولههای چند دیواره در روغن [شکل ۳ ب] ۱۶ درصد افزایش هدایت حرارتی گزارش کرده است. گزارشها و تحقیقات مختلفی در زمینه افزایش هدایت حرارتی سوسپانسیون نانولولهکربنی ارائه شده است؛ زای [۲۶] افزایش ده تا ۲۰ درصدی هدایت حرارتی را در سوسپانسیون یک درصد حجمی با سیال آب گزارش کرده است. ون و دینگ [۲۷] نیز ۲۵درصد افزایش هدایت را در سوسپانسیون ۸/۰ درصد حجمی در آب گزارش کرده است. اسیل [۲۳] بیشترین افزایش را ۳۸ درصد برای سوسپانسیون شش درصد حجمی در آب گزارش کرده است.
ون و دینگ افزایش سریع هدایت در غلظتهای حدود ۲/۰ درصد حجمی را گزارش کرده و نشان داده است که این افزایش از آن به بعد تقریباً ثابت میماند. در تمامی گزارشها افزایش هدایت با دما مشاهده شده؛ هر چند برای دماهای بالاتر از ۳۰ درجه سانتیگراد این افزایش تقریباً متوقف میشود.
جریان، جابهجایی و جوشش
اخیراً ضرایب انتقال حرارت نانوسیال در جابهجایی آزاد و اجباری اندازهگیری شده است. داس [۱۷] آزمایشهای تعیین خواص حرارتی جوشش را برای نانوسیال شروع کرد. یو [۶] فلاکس حرارتی بحرانی نانوسیال آلومینا- آب در حال جوشش را اندازهگیری کرد و افزایش سه برابری در فلاکس حرارت بحرانی (CHF) را نسبت به آب خالص گزارش کرد. در همین زمینه واسالو [۷] نانوسیال سیلیکا- آب را تهیه کرد و همان افزایش سه برابری در CHF را گزارش کرد. ضریب انتقال حرارت جابجایی آزاد علاوه بر اینکه به هدایت حرارتی بستگی دارد، به خواص دیگری مانند گرمای ویژه، دانسیته و ویسکوزیته دینامیک نیز وابسته است که البته در این درصدهای حجمی پایین همانطور که انتظار میرفت و مشاهده شد، گرمای ویژه و دانسیته بسیار به سیال پایه نزدیک است [۳۳]. ونگ [۳۴] ویسکوزیته آلومینا- آب را اندازه گرفت و نشان داد که هر چه ذرات بهتر و بیشتر پراکنده شوند ویسکوزیته پایینتری را مشاهده میکنیم. وی افزایش ۳۰ درصدی در ویسکوزیته را برای سوسپانسیون سه درصد حجمی گزارش کرد که در مقایسه با نتیجه پکرچو [۳۵] سه برابر بیشتر به نظر میرسد که نشاندهنده وابستگی ویکسوزیته به روش تهیه نانوسیال است. ژوانولی [۳۲] ضریب اصطکاک را برای نانوسیال حاوی یک تا دو درصد ذرات مس به دست آورد و نشان دادکه این ضریب تقریباً مشابه سیال پایه آب است. ایستمن [۳۶] نشان داد که ضریب انتقال حرارت جابهجایی اجباری سوسپانسیون ۹/۰ درصد حجمی از نانوذرات اکسید مس، ۱۵ درصد بیشتر از سیال پایه است.
ژوان ولی [۳۲] ضریب انتقال حرارت جابهجایی اجباری در جریان آشفته را نیز اندازه گرفتند و نشان دادند که مقدار کمی از نانوذرات مس در آب دیونیزه شده، ضریب انتقال حرارت را به صورت قابل توجهی افزایش میدهد، به طور مثال افزودن دو درصد حجمی از نانوذرات مس به آب، حدود ۳۹ درصد انتقال حرارت آن را افزایش میدهد. در حالی که در تناقض با نتایج بالا، پکوچو [۳۵] کاهش ۱۲درصدی ضریب انتقال حرارت را در سوسپانسیون حاوی سه درصد حجمی از آلومینا و تیتانا در همان شرایط مشاهده کردند. پوترا [۲۸] با کار روی جابجائی آزاد، بر خلاف هدایت و جابهجایی اجباری، کاهش انتقال حرارت را مشاهده کرد. داس با [۱۷] انجام آزمایشهای جوشش روی آلومینا- آب نشان داد که با افزایش درصد حجمی نانوذرات، بازدهی جوشش نسبت به سیال پایه کم میشود. وی این کاهش را به تغییر خواص سطحی بویلر به علت تهنشینی نانوذرات روی سطح ناهموار آن نسبت داد، نه به تغییر خواص سیال. یو [۶] با اندازهگیری فلاکس حرارتی بحرانی برای جوشش روی سطوح تخت و مربعی مس که در نانوسیال آب- آلومینا غوطهور بودند، نشان داد که فلاکس حرارتی این سیالات سه برابر آب است و اندازه متوسط حباب، افزایش و فرکانس تولید آنها کاهش مییابد. این نتایج را واسالو [۷] نیز تأیید کرد. وی روی نانوسیال آب – سیلیکا کار میکرد و افزایش فلاکس حرارت بحرانی را برای غلظتهای کمتر از یکهزارم درصد حجمی گزارش کرد. هنوز مدلی برای پیشبینی این افزایشها و فاکتورهای مؤثر بر آن وجود ندارد
فهرست مطالب :
چکیده ۱
مقدمه: ۳
فصل اول :
۱٫ تولید نانولوله های کربنی با سوزاندن گیاهان: ۶
فصل دوم :
۱٫ انتقال گرما به وسیله نانوسیالات…. ۹
۲ . تهیه نانوسیالات…. ۱۱
۳ . انتقال حرارت در سیالات ساکن.. ۱۳
۴ . جریان، جابهجایی و جوشش….. ۱۶
۵ . هدایت حرارتی نانوسیال.. ۱۸
۶ . چشمانداز. ۱۹
فصل سوم :
۱٫ محققان با نانو لولههای کربن نخستین مدارالکترونیک تک مولکولی را ساختند : ۲۲
۲٫ پژوهشگران ایرانی موفق به افزایش شار و انرژی مغناطیسی نانوآلیاژ مغناطیسی شدند: .۲۳
۳٫ نانولولههای پلیمری پایدار با کاربردهای نانو زیستفنآوری تولید شد : ۲۶
فصل چهارم :
۱٫ خوردگی در جهان نانو : ۳۰
۳٫ فناوری نانو چیست و چه اثری در آینده جهان خواهد داشت؟. ۳۲
۴٫ حفظ خواص نانولولههای کربنی متصل شده با افزودن هیدروژن.. ۳۹
۵٫ روشی برای تلخیص نانو لوله های نارس…. ۴۱
۶٫ ساخت نانو مدارهای رایانهای نانو لوله ای ۴۲
۷٫ رشد قطعات بریده شده نانولولههای کربنی.. ۴۲
۸٫ مشاهده نانولولههای کربنی با پرتوهای الکترونی.. ۴۶
۹٫ انحناپذیری نانولولهها، عاملی جهت کلیدزنی.. ۴۹
۱۰٫ ساخت جلیقههای ضدگلوله به کمک نانولولهکربنی.. ۵۱
۱۱٫ نانو لولههای کربنی جاذب با آستانه تراوایی کمتر. ۵۴
فصل پنجم :
۱٫ جابهجایی شکاف انرژی نانولولههای کربنی با دما ۵۷
۲٫ عاملدار کردن نانولولهها بدون کاهش هدایت الکتریکی آنها ۵۸
۳٫ غیرسمیکردن نانو لولههای کربنی با پوششدار کردن آنها ۶۰
۴٫ خالصسازی نانولولههای کربنی از طریق فرآیند مبتنی بر لیزر. ۶۳
۵٫ رشد نانو لولههای کربنی با روش CVD در دمای پایین.. ۶۶
فصل ششم :
۱٫ پر نمودن نانو لوله های نیترید بور. ۶۸
۲٫ نانو لولههای کربنی داغترین موضوع در فیزیک…. ۶۹
۳٫ تولید نانولولههای کربنی تکدیواره به وسیله یک فرآیند پلاسمای منحصر به فرد. ۷۱
۴٫ معرفی مقاله :سنتز نانولولههای کربنی با روش رشد بر روی پایه کاتالیست آلومینا ۷۳
۵٫ تشخیص و شناسایی بخارهای شیمیایی به کمک نانولولههای کربنی.. ۷۵
روبرت ای فریتاس…. ۷۷
۶٫ نخستین کنگره بین المللی نانو فناوری و کابردهای آن.. ۷۸
۷٫ نانولوله کربنی.. ۸۲
۸٫ نانولولههای کربنی خالص و اولین آزمایش درون بدن موجود زنده ۸۳
۹٫ کاربرد نانولولهها در پیلهای خورشیدی… ۸۶
فصل هفتم.. ۹۵
۱٫ تأثیر فناورینانو بر بازارهای انرژی ۹۶
۳٫ سنتز نانولولههای کربنی با روش رشد بر روی پایه کاتالیست آلومینا ۱۰۰
۴٫ نانولولههای کربنی خالص و اولین آزمایش درون بدن موجود زنده ۱۰۱
واکنشهای جدید.. ۱۰۶
مسیر انتقال کوتاه ۱۱۱
۵٫ مزایای الکترودهای نانوساختار برای تجهیزات ذخیره انرژی پرسرعت…. ۱۱۵
۶٫ استانداردسازی نانولولههای کربنی.. ۱۱۵
۷٫ چالشهای استانداردسازی نانولولههای کربنی.. ۱۱۸
۹٫ روشها و ابزار اندازهگیری برای مشخصهیابی نانولولههای کربنی.. ۱۲۱
۱۰٫ کش آمدن نانولولههای کربنی؛ زیربنای توسعه نسل آینده نیمهرساناها و نانوکامپوزیتها ۱۲۹
۱۱٫ ساخت نانوسیمهای مقاوم با ساختار هیبریدی جدید.. ۱۳۰
۱۲٫ نانو لوله کربنی .۱۳۳
فصل هشتم :
۱٫خواص نانولوله کربنی.۱۳۵
۲٫کاربرد نانوتیوب در صنعت ساختمان.۱۳۵
۳دلایل رجحان نانولوله کربنی عبارتند از :..۱۳۶
فرمت فایل: WORD
تعداد صفحات: 145
پس از ثبت دکمه خرید و تکمیل فرم خرید به درگاه بانکی متصل خواهید شد که پس از پرداخت موفق بانکی و بازگشت به همین صفحه می توانید فایل مورد نظر خود را دانلود کنید. در ضمن لینک فایل خریداری شده به ایمیل شما نیز ارسال خواهد شد. لینک دانلود فایل به مدت 48 ساعت فعال خواهد بود.